
Accelerating the next technology revolution

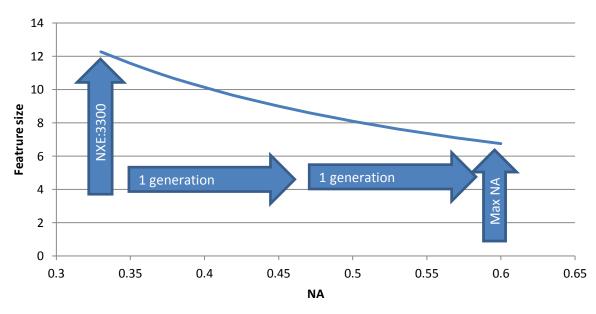
Driving the Industry to a Consensus on High-NA EUV

Patrick Kearney and...

The High-NA EUV Team

- Obert Wood, Globalfoundries
- Eric Hendrickx, IMEC
- Greg McIntyre, IBM
- Jan van Schoot, ASML
- Winfried Kaiser, Carl Zeiss
- Soichi Inoue, EIDEC
- Frank Goodwin, SEMATECH
- Stefan Wurm, SEMATECH

Introduction


- Background
 - Why High NA EUV?
 - Why now?
 - Consortia role overview
 - Imaging quality
 - Field size and magnification
 - Optical design and two more mirrors
 - Design parameters
 - Cost drivers
- Potential solutions
 - Overview
 - Tradeoffs
- Industry survey
- July 9th High-NA EUV meeting takeaways
- Next steps

Why High-NA EUV?

Feature size =
$$\frac{k1 \lambda}{NA}$$

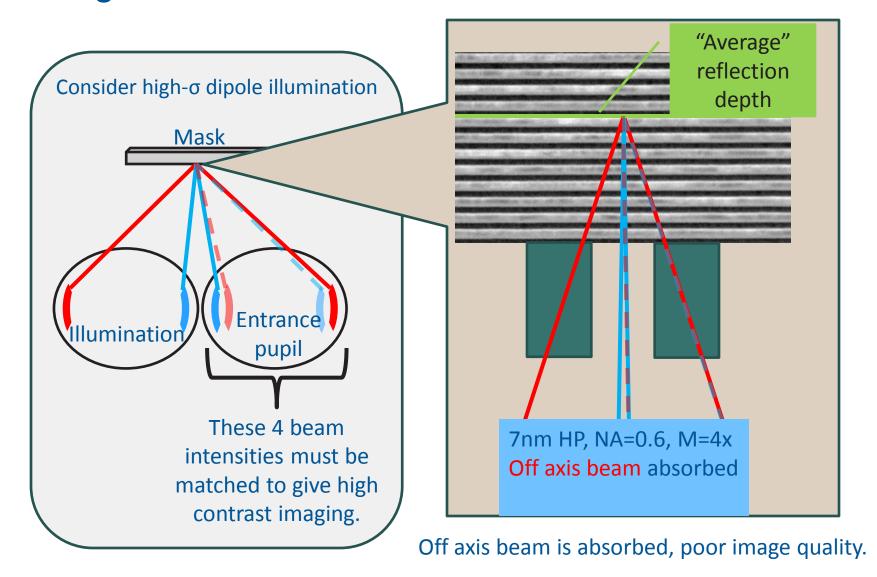
Feature size vs. NA for EUV at k1=0.3

Extending NA to 0.5 allows 1 more EUV generation beyond the NXE:3400. Extending NA to 0.6 allows ~2 more EUV generations beyond the NXE:3400.

Why consider High-NA EUV now?

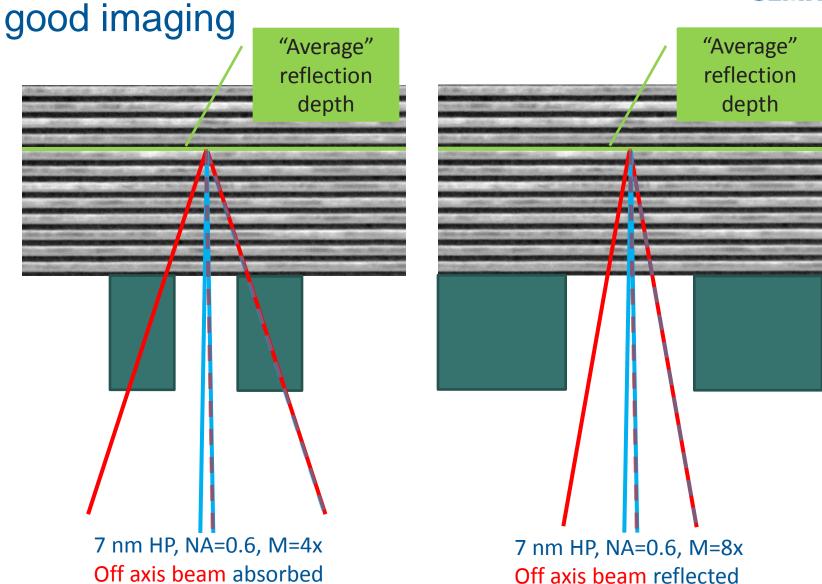
- Scanner roadmap predicts end of 0.33 NA single patterning at 13 nm feature size
 - For smaller features EUV double patterning or high-NA EUV is required
- A transition to high-NA EUV requires ~5 years to prepare
 - If high-NA EUV should be needed in 2018/19 then a decision on the high-NA EUV path has to be made by YE 2013
- Transitioning to high-NA EUV is an industry decision and needs to be broadly supported. This requires:
 - Understanding of what is and what is not acceptable to EUV stakeholders (chip makers, mask makers, tool and materials suppliers)
 - Stakeholders need to develop their own internal assessment and position with respect to high-NA EUV
 - Company positions on high-NA EUV need to be shared so that, as an industry, we understand where we agree and where we differ

Team driving industry to a decision



Timeline / Milestones

- Q1 2013: Assess current status of high-NA EUV discussion
 - Review literature, assess the possibilities
 - Develop shared understanding of the current high-NA EUV options as they are being discussed
- Q2 2013: Share state of current high-NA EUV industry discussion with stakeholders / get early feedback
 - Face-to-face meetings with all stakeholders
 - Survey all stakeholders for their views
- July 9th: SEMATECH High-NA EUV Workshop at SEMICON West.
 - Share industry survey results on high-NA EUV
 - Stakeholders share their perspective and learn about the perspective of others
- Q3-Q4 2013: Industry discussion
 - Narrow options, drive industry consensus, and identify differences
 - Follow-up industry workshop co-located with EUVL Symposium
- End of 2013:
 - Achieve industry consensus on what high-NA EUV will look like or
 - Determine where the differences are


Image quality requires increasing demagnification as NA is increased

Increasing demagnification can bring back

Field size and magnification

- Since the magnification increases, either the mask gets bigger or the wafer field gets smaller.
- Consider 3 cases for wafer field:
 - Full Field (FF)– 26x33 mm
 - Half Field (HF)
 16.5x26 mm
 - Quarter Field (QF) 13x16.5 mm
- Consider 3 cases for mask size:
 - 6" square
 - 9" square
 - 12" square

Mask size for combinations of field size and magnification

Field size	4X	6X	8X	
FF	6"	9"	12"	
HF	6"	9"	9"	
QF	6"	6"	6"	

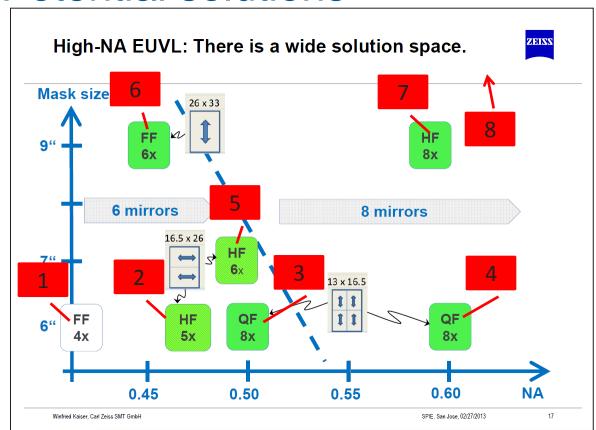
Limiting Factors—Optical design

- High-NA large field steppers require more mirrors (8).
 - 8 mirror steppers will have ~40% of the transmission of 6 mirror steppers
 - -8 mirrors are required for NA = 0.6 steppers

Design parameters

- Feature size & k1 → minimum NA
- Imaging requirements & NA → minimum demagnification
- Demagnification & field size → minimum mask size
- NA, demagnification & field size → number of mirrors
- Number of mirrors & field size → stepper throughput

- The "free" parameters are field size, demagnification at each NA
- Useful demagnifications range from 4x to 8x


Cost drivers

- Stepper
 - Stepper throughput will drive cost in operation
 - Larger wafer fields increase throughput
 - Fewer mirrors increases throughput
 - Higher demagnification, higher NA, larger field steppers will be more expensive, but this is anticipated to have a relatively small effect
- Mask size
 - Changing mask size will be expensive, requiring retooling throughout the supply chain

Potential solutions

Throughput/mirrors: 8 mirror systems should have ~40% of the throughput of 6

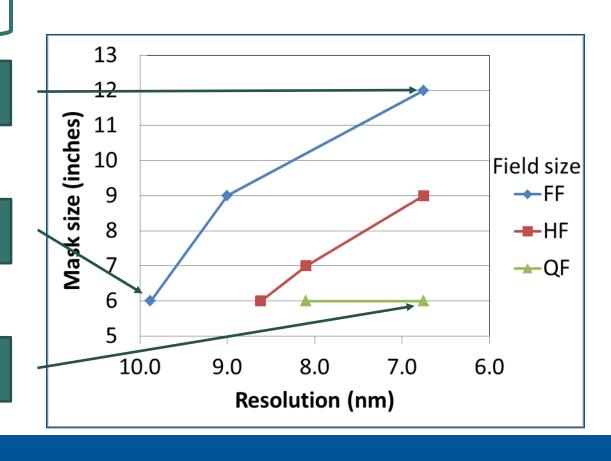
mirror systems.

Throughput/field size:
Assumed HF reduced
throughput to 74% and QF
reduced throughput to 55%.
Throughput is just these two
factors multiplied, represents
throughput relative to case 1.

Case	Magnification	Field size	Mask size	"Resolution"	NA	Coatings	N mirrors	Throughput
Case 1	4x	FF	6 inch	9.9 nm	0.41	Advanced	6	100%
Case 2	5x	HF	6 inch	8.6 nm	0.47	TBD	6	74%
Case 3	8x	QF	6 inch	8.1 nm	0.50	Standard	6	55%
Case 4	8x	QF	6 inch	6.8 nm	0.60	Standard	8	22%
Case 5	6x	HF	7 inch	8.1 nm	0.50	Standard	6	74%
Case 6	6x	FF	9 inch	9.0 nm	0.45	Standard	6	100%
Case 7	8x	HF	9 inch	6.8 nm	0.60	Standard	8	30%
Case 8	8x	FF	12 inch	6.8 nm	0.60	Standard	8	40%

Tradeoffs

SEMATECH


- Resolution
- 6" mask
- Full wafer field

Industry must give up one

Give up 6" mask

Give up resolution

Give up Full wafer field

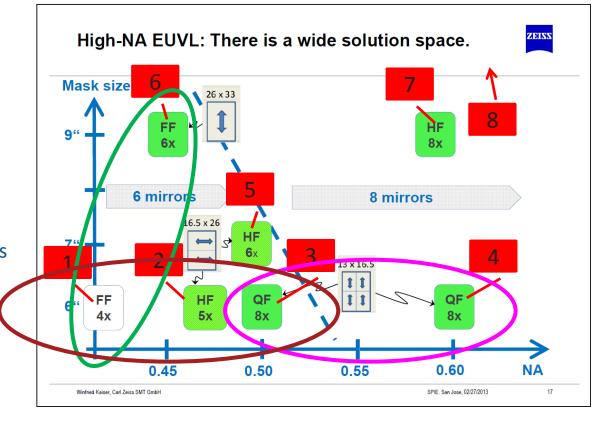
Summary of High-NA Options

- Increasing NA much above current levels will require increased stepper demagnification
- Keeping 6" masks will require reducing the wafer field size
- Alternately, there are larger field solutions possible for 9" and larger masks
- We have presented an overview of the possible solutions
- Our task is to drive the industry toward consensus by YE 2013

SEMATECH High-NA EUV Survey Get Industry Perspective on High-NA EUV

- Four anonymous surveys were conducted with each of the following stakeholder groups
 - Chip makers: 8 of 9 companies responded
 - Mask makers: 9 of 11 companies responded
 - Stepper suppliers: 4 of 4 companies responded
 - Mask tool/material suppliers: 18 of 22 companies responded
- All four surveys had excellent industry participation
- Survey conducted in Q2-2013

All Companies Feedback


High-NA Preferences

Chip makers

Mask makers

Equipment and material makers

FF = Full Field HF = Half Field QF = Quarter Field

- Some overlap between chip makers and mask makers
- Some overlap between mask makers and equipment and material makers
- But there is no common ground yet between all three groups

High-NA EUV Survey Conclusions

- Chip makers want full field solutions
 - Beyond 10 nm half-pitch this will require higher magnification and a larger mask
- Chip makers are evenly split between 9-inch and 12-inch mask preferences
 - 9-inch masks will support Case 6 for 9 nm resolution.
 - 12-inch masks will support Case 8 for 7 nm resolution
 - The industry only wants one mask size change
- Mask makers and equipment/material makers prefer to stay with the current 6-inch mask size
 - A switch to 9- or 12-inch mask sizes is expected to take 3 to 6 years
- Mask equipment/material makers do not expect fundamental changes required to their technology to accommodate larger mask sizes

July 9th Meeting Summary

- Mask equipment suppliers will not invest in a new mask size without more consensus from the chipmakers
- Chipmakers seem to be waiting for EUV to be successful before placing bets on High-NA EUV
- Since a size transition is expected to take 3-6 years, this either:
 - Forces a delay of High-NA EUV or
 - Limits initial High-NA EUV to the 6" mask size solutions.

Summary

- SEMATECH has laid out the options for High-NA EUV
- SEMATECH has surveyed the industry and found there is disagreement between the chipmakers, mask makers and supply chain about how to proceed
 - Equipment suppliers and mask makers prefer solutions that retain 6" masks
 - Chipmakers want full field solutions and at high resolution that implies larger masks
- If chipmakers don't push for a larger mask soon, we may end up with a delayed implementation of High-NA EUV or limit ourselves to 6" masks
- There is a side meeting here at the EUV Symposium to get the key stakeholders in the same room to discuss how to move forward